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9.1 Replica computation for the spiked-Wigner model
We are given as observation a N × N symmetric matrix Y created as

Y =

√
λ

N
x∗x∗⊺︸ ︷︷ ︸

N×N rank-one matrix

+ ξ︸︷︷︸
symmetric iid noise

where x∗ ∈ RN with x∗
i

i.i.d.∼ PX (x), ξij = ξji
i.i.d.∼ N (0, 1) for i ≤ j. We keep the prior P0

generic, as long as it is factorized over all the components of the vector x.
This is called the spiked-Wigner model in statistics. The name ”Wigner” refer to the fact

that Y is a Wigner matrix (a symmetric random matrix with components sampled randomly
from a Gaussian distribution) plus a ”spike”, that is a rank one matrix x∗x∗⊺. We will use it as
an example of recovering a signal with low rank structure corrupted by noise which we want to
clean up.

Our task shall be to recover the vector x from the knowledge of Y , the signal-to-noise ratio
λ and the prior P0. As we saw during the lecture, this can be achieved using the posterior
estimation, i.e. by computing the posterior distribution and evaluating some statistics over it.

In this exercise, you will compute the normalization factor of the posterior distribution,
i.e. the partition function of the problem, and derive the state equation for the overlap order
parameter.

1. Show that the posterior distribution P (x|Y ) for the problem can be written as

P (x|Y) =
1

Z(Y)

[
N∏

i=1
PX (xi)

]∏
i≤j

e
− λ

2N x2
i x2

j+
√

λ
N xixjyij

√
2π

 (1)

for a specific Z(Y). How is Z(Y) defined for this measure?
One needs to recognize that the output channel distribution satisfies, for all i ≤ j, Pout(yij |x) =
N(yij ,

√
λ/Nxixj , 1), so that

P (x|Y) =
1

Z(Y)

[
N∏

i=1
PX (xi)

]∏
i≤j

e
− 1

2

(
yij−

√
λ
N xixj

)2

√
2π

 (2)
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where we notice in particular that the product in the Gaussian factor runs over i ≤ j due
to the symmetry of the problem. It’s convenient to reabsorb all pieces independent of x
from the exponential in the normalisation, allowing us to write

P (x|Y) =
1

Z(Y)

[
N∏

i=1
PX (xi)

]∏
i≤j

e
− λ

2N x2
i x2

j+
√

λ
N xixjyij

√
2π

 (3)

where

Z(Y) =

∫
dx

[
N∏

i=1
PX (xi)

]∏
i≤j

e
− λ

2N x2
i x2

j+
√

λ
N xixjyij

√
2π

 (4)

We are interested in computing the averaged free entropy associated to the posterior distri-
bution, i.e.

lim
N→∞

EY

[
1
N

log Z(Y )

]
which we can compute using the replica method.

2. Show that the averaged replicated partition function equals

EY[Zn] =

∫
dY e

− 1
2
∑

i≤j
y2

ij

n∏
α=0

∫
dx(α)

(
N∏

i=1
PX

(
x
(α)
i

))∏
i≤j

e
− λ

2N

(
x
(α)
i

)2(
x
(α)
j

)2
+
√

λ
N x

(α)
i x

(α)
j yij

√
2π


(5)

where you should notice that we are taking the product n + 1 replicas.
We use the identity

EY [F [Y ]] =

∫
dY P (Y )F [Y ] =

∫
dY

∫
dx∗Pout(Y |x∗)PX (x∗)F [Y ] =

∫
dY Z[Y]e

− 1
2
∑

i≤j
y2

ij F [Y ]

(6)
where the last step crucially depends on the fact that we reabsorbed all x-independent
terms of the posterior in the definition of the partition function. Then, one has

EY[Z[Y]n] =

∫
dY e

− 1
2
∑

i≤j
y2

ij Z[Y]n+1 (7)

and one gets the result by plugging in the definition of the partition function.

3. Integrate over the disorder, i.e. the observation Y , to get at leading order in N

EY[Zn] =

∫ ∏
α,i

PX

(
x
(α)
i

)
dx

(α)
i exp

λN

2
∑
α<β

(∑
i

x
(α)
i x

(β)
i

N

)2 (8)
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EY [Zn] =

∫
dY

n∏
α=0

∫
dx(α)

∏
i

PX

(
x
(α)
i

)
(2π)− N(N+1)

2 exp

 n∑
α=0

∑
i≤j

[
− λ

2N
x
(α)
i

2
x
(α)
j

2
+

√
λ

N
yijx

(α)
i x

(α)
j

]

=

∫ ∏
α,i

PX

(
x
(α)
i

)
dx

(α)
i exp

∑
i≤j

[
− λ

2N

∑
α

x
(α)
i

2
x
(α)
j

2
]∏

i≤j

∫
dyij

e
−

y2
ij
2 +yij

(√
λ
N

∑
α

x
(α)
i x

(α)
j

)
√

2π︸ ︷︷ ︸
(a)
= exp

(
λ

2N

∑
i≤j

∑
α,β x

(α)
i x

(α)
j x

(β)
i x

(β)
j

)
(b)
=

∫ ∏
α,i

PX

(
x
(α)
i

)
dx

(α)
i exp

−λN

4
∑

α

∑
i

x
(α)
i

2

N

2

+
λN

4
∑
α,β

(∑
i

x
(α)
i x

(β)
i

N

)2
=

∫ ∏
α,i

PX

(
x
(α)
i

)
dx

(α)
i exp

λN

2
∑
α<β

(∑
i

x
(α)
i x

(β)
i

N

)2

(a) uses the fact that
∫

Dz eaz = ea2/2

(b) uses the fact that ∑
i≤j

ai

N

aj

N
=

1
2

(∑
i

ai

N

)2

+
1
2
∑

i

a2
i

N2

and neglect the second term since it scales like O(N−1).

4. Introduce the appropriate order parameters and obtain

EY[Zn] =

∫ ∏
α<β

dq̂αβ dqαβ exp
(
NIenergy(qαβ , q̂αβ) + NIentropy(q̂αβ)

)
(9)

where we defined
Ienergy(qαβ , q̂αβ) =

λ

2
∑
α<β

q2
αβ −

∑
α<β

qαβ q̂αβ (10)

and

Ientropy(q̂αβ) = log

∫ ∏
α

PX (xα) dxα exp

∑
α<β

q̂αβxαxβ


 (11)

where we stress that here the integral over dxα runs over the real numbers for all α =
0, . . . , n.
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EY [Zn]
(a)
=

∫ ∏
α,i

PX

(
x
(α)
i

)
dx

(α)
i

∫ ∏
α<β

δ

(
Nqαβ −

∑
i

x
(α)
i x

(β)
i

)
dqαβ exp

λN

2
∑
α<β

q2
αβ


(b)
=

∫ ∏
α,i

PX

(
x
(α)
i

)
dx

(α)
i

∫ ∏
α<β

e−q̂αβNqαβ+q̂αβ

∑
i

x
(α)
i x

(β)
i dq̂αβ dqαβ exp

λN

2
∑
α<β

q2
αβ


(c)
=

∫ ∏
α<β

dq̂αβ dqαβ exp

λN

2
∑
α<β

q2
αβ − N

∑
α<β

qαβ q̂αβ



∫ ∏

α

PX (xα) dxα exp

∑
α<β

q̂αβxαxβ


N

(a) partitions the huge integral according to overlap between two distinct replicas qαβ

with definitions
qαβ =

1
N

∑
i

x
(α)
i x

(β)
i , ∀ α < β

(b) introduces Fourier representation of the Dirac’s delta

(c) change the order of integral and expectation. Moreover, x
(α)
i are iid for each i, the

tuple x
(0)
i , x

(1)
i , · · · , x

(n)
i are identical distributed, so we switch to subscript notation

x(0), x(1), · · · , x(n) to get rid of component index i but keep the replica index α. This
leads to the power N around the curly brackets.

5. Which replica ansatz should you impose in this computation?
It makes sense to use the Replica Symmetric one, as we are considering the Bayes optimal
setting. We pick qαβ = q, q̂αβ = q̂.

6. Show that in the ansatz you discussed in the previous point, the energetic term satisfies

lim
n→0

1
n

Ienergy(qαβ , q̂αβ) =
λ

4 q2 − qq̂

2 (12)

for q and q̂ real numbers.
We need to expand Ienergy for small n. Recall that qαβ is a square matrix of size n + 1.

Ienergy(qαβ , q̂αβ) =
λ

2
∑
α<β

q2
αβ +

∑
α<β

qαβ q̂αβ

=
λ

2
(n + 1)n

2 q2 − (n + 1)n
2 qq̂

≈λn

4 q2 − nqq̂

2

7. Show that in the ansatz you discussed in the previous point, the entropic term satisfies

Ientropy(q̂αβ) = log
(∫

Dz

[(∫
PX (x) dx exp

{
− q̂

2x2 +
√

q̂xz

})n+1
])

(13)
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for q̂ real numbers.
We have

Ientropy(q̂αβ) = log

∫ ∏
α

PX (xα) dxα exp

−
∑
α<β

q̂αβxαxβ




= log

∫ ∏
α

PX (xα) dxα exp

−q̂
∑
α<β

xαxβ




= log

∫ ∏
α

PX (xα) dxα exp

− q̂

2
∑
α ̸=β

xαxβ




= log

∫ ∏
α

PX (xα) dxα exp

− q̂

2
∑

α

x2
α +

q̂

2

(∑
α

xα

)2



= log
(∫

Dz

∫ ∏
α

PX (xα) dxα exp
{∑

α

(
− q̂

2x2
α +

√
q̂xαz

)})

= log
(∫

Dz

(∫
PX (x) dx exp

{
− q̂

2x2 +
√

q̂xz

})n+1
)

where in the fifth passage we used the Hubbard stratonovish transformation (see previous
replica computation).

8. Show that in the small n limit, the entropic term satisfies

lim
n→0

1
n

Ientropy(q̂αβ) =

∫
Dz I(q̂, z) log (I(q̂, z)) (14)

where we defined I(q̂, z) as

I(q̂, z) =

∫
PX (x) dx exp

{
− q̂

2x2 +
√

q̂xz

}
(15)

and that it can be equivalently rewritten as

lim
n→0

1
n

Ientropy(q̂αβ) =

∫
Dz

∫
PX (x0) dx0 log

(∫
PX (x) dx exp

{
− q̂

2x2 +
√

q̂xz + q̂xx0

})
(16)

We will need the following identity: for a random quantity X with mean one, in the small
n limit we have

E[Xn+1] ∼ exp(nE[X log(X)]) (17)

E[Xn+1] = E
[
Xen log(X)

]
∼ E[X + nX log(X)] = E[X ] + nE[X log(X)] = 1 + nE[X log(X)]

= exp(log(1 + nE[X log(X)])) ∼ exp(nE[X log(X)])
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Now we notice that∫
DzI(q̂, z) =

∫
Dz

∫
PX (x) dx exp

{
− q̂

2x2 +
√

q̂xz

}
=

∫
PX (x) dx = 1

which gives us the first result. To get the final result one needs to do a bit of manipulations.
First, we notice that

exp
{

−1
2z2

}
I (q̂, z) =

∫
PX (x) dx exp

{
−1

2

(√
q̂x − z

)2
}

(18)

Finally, after a change of variable we have

z → t = z −
√

q̂x0 (19)

where we indicate with x0 the integration variable inside the first I(q̂, z) (the one outside
of the logarithm). This gives us∫

Dz I(q̂, z) log (I(q̂, z)) =

∫
Dt

∫
PX (x0) dx0 I(q̂, z) log

(
I(q̂, t +

√
q̂x0)

)
(20)

which is exactly the result we want.

9. Argue finally that the free entropy

ϕ = lim
N→∞

EY

[
1
N

log Z(Y )

]
(21)

can be expressed as

ϕ = extrq,q̂

[
λ

4 q2 − qq̂

2 +

∫
Dz

∫
PX (x0) dx0 log

(∫
PX (x) dx exp

{
− q̂

2x2 +
√

q̂xz + q̂xx0

})]
(22)

or equivalently as

ϕ = extrq

[
−λ

4 q2 +

∫
DzPX (x0) dx0 log

(∫
PX (x) dx exp

{
−λq

2 x2 +
√

λqxz + λqxx0

})]
(23)

The first expression just combines the previous results and uses the replica trick

ϕ ≈ EZ(Y )n − 1
Nn

. (24)

The second expression comes from taking the fixed point on q, which gives q̂ = λq, and
substituting it back in.
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