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9.1 Replica computation for the spiked-Wigner model

We are given as observation a N x N symmetric matrix Y created as

_/)‘ * KT

N x N rank-one matrix symmetric iid noise

where * € RY with z} i Px(x), &;j = & g N(0,1) for i < 5. We keep the prior P
generic, as long as it is factorized over all the components of the vector «.

This is called the spiked-Wigner model in statistics. The name "Wigner” refer to the fact
that Y is a Wigner matrix (a symmetric random matrix with components sampled randomly
from a Gaussian distribution) plus a ”“spike”, that is a rank one matrix x*x*T. We will use it as
an example of recovering a signal with low rank structure corrupted by noise which we want to
clean up.

Our task shall be to recover the vector  from the knowledge of Y, the signal-to-noise ratio
A and the prior Py. As we saw during the lecture, this can be achieved using the posterior
estimation, i.e. by computing the posterior distribution and evaluating some statistics over it.

In this exercise, you will compute the normalization factor of the posterior distribution,
i.e. the partition function of the problem, and derive the state equation for the overlap order
parameter.

1. Show that the posterior distribution P(x|Y") for the problem can be written as
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for a specific Z(Y). How is Z(Y) defined for this measure?

One needs to recognize that the output channel distribution satisfies, for all i < j, Pou¢ (yij|x) =
N(yija V A/inxj, 1), so that
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where we notice in particular that the product in the Gaussian factor runs over ¢ < j due
to the symmetry of the problem. It’s convenient to reabsorb all pieces independent of @
from the exponential in the normalisation, allowing us to write
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We are interested in computing the averaged free entropy associated to the posterior distri-
bution, i.e.
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which we can compute using the replica method.

2. Show that the averaged replicated partition function equals
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where you should notice that we are taking the product n + 1 replicas.

We use the identity

Ey [F[Y]] = / AY P(Y)F[Y] = / ay / dz* Pyt (Y]a*) Py (27 F[Y] = / AV Z[Y]e 2 2i<i Vi Fly]
(6)

where the last step crucially depends on the fact that we reabsorbed all z-independent
terms of the posterior in the definition of the partition function. Then, one has
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and one gets the result by plugging in the definition of the partition function.

3. Integrate over the disorder, i.e. the observation Y, to get at leading order in N
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and neglect the second term since it scales like O(N~1).
4. Introduce the appropriate order parameters and obtain
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where we stress that here the integral over dx, runs over the real numbers for all a =
0,...,n.
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(a) partitions the huge integral according to overlap between two distinct replicas g s
with definitions

dop = %Zmz@)xiﬂ), Va<p

(b) introduces Fourier representation of the Dirac’s delta

(@)

(c) change the order of integral and expectation. Moreover, x;
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tuple x; ', x; 7, are identical distributed, so we switch to subscript notation
T(0), T(1)s" " > T(n) tO get rid of component index 7 but keep the replica index «. This
leads to the power N around the curly brackets.

are iid for each i, the

5. Which replica ansatz should you impose in this computation?
It makes sense to use the Replica Symmetric one, as we are considering the Bayes optimal
setting. We pick qog = ¢, dog = §.

6. Show that in the ansatz you discussed in the previous point, the energetic term satisfies
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for ¢ and § real numbers.

We need to expand Iepergy for small n. Recall that g,g is a square matrix of size n + 1.
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7. Show that in the ansatz you discussed in the previous point, the entropic term satisfies
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for ¢ real numbers.
We have
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where in the fifth passage we used the Hubbard stratonovish transformation (see previous
replica computation).

. Show that in the small n limit, the entropic term satisfies
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where we defined (4, z) as
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and that it can be equivalently rewritten as
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We will need the following identity: for a random quantity X with mean one, in the small
n limit we have
E[X"1] ~ exp(nE[X log(X)]) (17)

E[X"] = E {Xenlogm} ~ E[X + nX log(X)] = E[X] + nE[X log(X)] = 1 + nE[X log(X)]
= exp(log(1 + nE[X log(X)])) ~ exp(nE[X log(X)])



Now we notice that
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which gives us the first result. To get the final result one needs to do a bit of manipulations.
First, we notice that
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Finally, after a change of variable we have
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where we indicate with zg the integration variable inside the first (g, z) (the one outside
of the logarithm). This gives us
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which is exactly the result we want.

. Argue finally that the free entropy
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can be expressed as
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The first expression just combines the previous results and uses the replica trick
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The second expression comes from taking the fixed point on ¢, which gives § = A\q, and
substituting it back in.
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